

BANDSAW CATALOGUE

WELCOME TO THE WORLD OF LENOX[®] BANDSAWS

Bandsaw Blades | Sawing Fluids

In this catalogue you'll find details of our **WORLD CLASS BANDSAW BLADES**, all of them have specific applications. Whether it's high production or occasional operational use, you'll find the blade to suit your needs in this catalogue.

WHERE CAN I BUY LENOX® BANDSAW PRODUCTS

Our Bandsaw products are distributed throughout Europe, the Middle East and Africa by our **EUROPEAN BANDSAW CENTRE OF EXCELLENCE** in The Netherlands. We have a distribution, welding and customer service centre in Helmond, The Netherlands.

We also have partnerships with local distributor welding centres in your area, call or email our customer services to find your nearest distributor.

Customer Services

- Call: +44 (0) 203 4506744
- Fax: +44 (0) 203 4509663
- E-mail: lenox.bandsaw@lenoxtools.eu

TABLE OF CONTENTS

INTRODUCTION	
PRODUCT SELECTION	
CARBIDE BANDSAW BLADES	
BI-METAL BANDSAW BLADES	
CARBON BANDSAW BLADES	
SAWING FLUIDS	
TIPS & TERMINOLOGY	
BLADE BREAK-IN	
POSSIBLE CAUSES OF BLADE FAILURE	

LENOX[®] ISO 9001 certified facility in Helmond, The Netherlands, Europe.

 $\mathsf{LENOX}^{\circledast}$ ISO 9001 certified facility in East Longmeadow, Mass., U.S.A.

WHAT THE LENOX[®] HERITAGE OF QUALITY AND PERFORMANCE MEANS FOR YOU.

The LENOX[®] name is inspired by the speed, strength and sharp teeth of the wolves that once roamed the hills near the western shore of Loch Lomond in Scotland - home to the Earl of Lenox.

With that inspiration, we began our company in 1915, making the first LENOX® hacksaw blades with just ten employees. Now, 97 years later, LENOX® remains dedicated to producing the highest quality, best performing cutting products. As a result, we've grown to employ more than 600 people. Most of them work at our ISO 9001 certified facility in East Longmeadow, Mass., U.S.A., where we design, test and manufacture a broad range of bandsaw blades, power tool accessories and hand tools. Professionals count on the performance of our products in more than 70 countries around the world.

We continue to invest in our facilities, strongly supporting research and development and integrating the most advanced manufacturing technology. The result is the breakthrough performance and endurance of our newest products including our ARMOR™ Bandsaw Blades. You'll see the exciting details in this catalogue. Plus, even more new, pacesetting LENOX[®] products are under development today and will soon be available.

Our commitment to quality and expertise extends throughout our sales and service organizations. LENOX® Representatives are carefully selected for their professionalism, experience and expertise. They are fully trained on both the application and marketing of LENOX® branded products. As a result, your LENOX® Representative knows your industry and fully understands the needs of distributors and end users.

Above all, we are committed to fully meeting the needs of our customers and ensuring complete satisfaction with our products and services. If you are new to LENOX[®], thank you for the opportunity to earn your business.

HOW LENOX[®] R&D RAISES THE BAR ON CUTTING PERFORMANCE

We leverage exceptional scientific understanding.

LENOX[®] has been developing premium performance blades for 97 years. That unique depth of experience has brought us a command of the science of cutting that's second to none.

It starts with our users' real world needs.

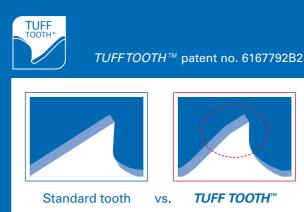
We set our R&D goals based on our unmatched insight into customer and industry requirements. Because we fully understand what our customers are cutting and how they are cutting it, we can develop superior, application specific blades.

Superior quality processes shape our product development.

We apply advanced statistical tools such as Six Sigma® to ensure consistent performance every step of the way. Our milestone-based product development ensures that you get the right product with the right quality at the right time - right from the start.

We won't ship a blade until its premium performance is proven. We constantly test LENOX® and competitors' products - both in our own laboratories and at independent labs. We research and develop new products and processes finding new ways to engineer and manufacture products that work better for you.

We won't compromise on R&D investment.


Our dedicated R&D staff is among the largest, most experienced in the world. If there's a way to engineer more performance into a blade, our engineers will find it - and our state-of-the-art manufacturing facility can build it.

A fully equipped, in-house metallurgical lab enables us to engineer LENOX[®] product performance right down to the raw material level. With a broad in-house test facility, we can fine tune blade designs and other products to ensure maximum performance in any application.

TUFF TOOTH™ Technology -Just One Example of How LENOX[®] R&D Pays Off For You.

Tooth strippage used to be a problem, especially when cutting tough materials like stainless steel. Not anymore. Using the latest computer design technology, LENOX[®] R&D found a way to greatly strengthen teeth at the point where they were most likely to break. LENOX[®] brings you the result—patented *TUFFTOOTH[™]* design—available on our CLASSIC[™] bi-metal blade. *TUFFTOOTH[™]* delivers dramatically improved cutting performance with a smoother feel, faster cut and longer lasting blade.

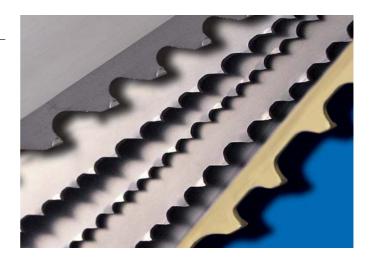
SUPPORTING YOUR BUSINESS

Guaranteed Trial Order

Order a LENOX[®] blade and get this guarantee: the recommended blade will outperform your present blade or your money back - that's the LENOX[®] Guaranteed Trial Order (GTO). Contact your LENOX[®] Sales Representative for more details.

Machine Tune-Up for the Best Sawing Performance

After a thorough tune-up by your LENOX® Factory Trained Technical Representative, every blade will cut smoother, straighter and faster. This 13 point tune-up optimizes blade and machine performance - ultimately reducing costs.


Training Increases Productivity

Help your operators become more efficient with a training session taught in your plant by LENOX. The training will cover installing blades, adjusting machinery, understanding speeds and feeds - everything you need to know to maximize machine and blade efficiency and reduce downtime.

Technical Support

Answers to sawing questions are just a call away. LENOX[®] Technical Support Professionals will tell you the most appropriate blade for a job. Get tips on sawing and learn ways to make the job easier. The answers will save money and effort.

- Call: +44 (0) 203 4506744
- Fax: +44 (0) 203 4509663
- E-mail: lenox.bandsaw@lenoxtools.eu

SAWCALC® Product Number 00501

SAWCALC® is an easy to use software program designed to increase efficiency and profits. You can quickly access volumes of sawing information to help reduce your sawing costs. Let *SAWCALC®* help you determine cutting parameters for your bandsawing applications.

SAWCALC® considers your material composition, size, shape, and the machine model to prescribe specific speeds, feeds, blade and tooth specification needed to achieve the best payback on your sawing investments. The program is available in English, French, German and Spanish, using either imperial or metric units.

The LENOX[®] Guarantee:

LENOX[®] provides a limited warranty for our products. Use only in accordance with LENOX[®] instructions. We warrant that our products are free from defects in materials and workmanship and that these products will perform as described under normal use and service. This warranty of quality is valid for 90 days from confirmed date of purchase. Except as expressly set forth herein, LENOX[®] makes no other warranties, express or implied, with regard to products, and expressly disclaims any warranty of fitness for a particular purpose. This warranty gives you specific legal rights and you may also have other rights which vary between countries.

BANDSAVV BLADES

www.lenoxtools.eu

HOWTO SELECTYOUR BANDSAW BLADES

The following information needs to be specified when a bandsaw blade is ordered:

For example:	Product Name	Length x Width x Thickness	Teeth Per Inch
	CONTESTOR GT®	16' x 1-1/4" x .042" 4860mm x 34mm x 1.07mm	3/4 TPI

BANDSAW BLADES

These steps are a guide to selecting the appropriate product for each application

STEP 1. Analyze the sawing application

Machine:

For most situations, knowing the blade dimensions (length x width x thickness) is all that is necessary.

Material:

Find out the following characteristics of the material to be cut. • Grade

- Hardness (if heat treated or hardened)
- Shape
- Size
- Is the material to be stacked (bundled) or cut one at a time?

Other Customer Needs:

- The specifics of the application should be considered.
- Production or utility/general purpose sawing operation?
- What is more important, fast cutting or tool life?
- Is material finish important?

STEP 2. Determine which product to use

Use the charts on pages 9, 19, 20 and 28.

- Find the material to be cut in the top row.
- Read down the chart to find which blade is recommended.
- For further assistance, contact your LENOX® Technical Representative.

STEP 3. Determine the proper number of teeth per inch (TPI)

- Use the tooth selection chart on page 30.
- If having difficulty choosing between two pitches, the finer
- of the two will generally give better performance.
- When compromise is necessary, choose the correct TPI first.

A general rule for bundles: Determine the correct TPI for one piece, and choose one pitch coarser for the bundle.

STEP 4. Order LENOX® Sawing Fluids and Lubricants

...for better performance and longer life on any blade.

STEP 5. Determine the need for MERCURIZATION

This patented, enhanced mechanical design promotes more efficient tooth penetration and chip formation, easily cutting through the work hardened zone. The MERCURIZE symbol denotes any product that can be *MERCURIZED™*. Consult your LENOX® Technical Representative to determine if MERCURIZATION will benefit your operation.

STEP 6. Install the blade and fluid

STEP 7. Break in the blade properly

For break-in recommendations, refer to page 42 or contact your LENOX® Technical Representative.

STEP 8. Run the blade at the correct speed & feed rate

Refer to the Bi-metal and Carbide Speed Charts. For additional speed and feed recommendations contact your LENOX® Technical Representative.

PRODUCT SELECTION CHARTS

CARBIDE PRODUCT SELECTION

СË	ALUMINUM/ Non-Ferrous	CARBON STEELS	STRUCTURAL STEELS	ALLOY STEELS	BEARING STEELS	MOLD STEELS	STAINLESS STEELS	TOOL STEELS	TITANIUM Alloys	NICKEL-BASED ALLOYS (INCONEL®)		
RMANC	EASY 🗲				—— MACHIN	IABILITY —				> DIFFICULT		
JRM			ARMOR [®]	[®] CT BLACK	Extreme Cuttir	ng Rates						
I PERFO							LENOX® M	4<i>X CT</i>® Extr	eme Performa	nce on Super Alloys		
HGH	TRI TECH CT [™] TRI TECH CT [™] Set Style Carbide for Difficult to Cut Metals											
	TRI-MAS	STER®				TRI-MASTER Versatile Carbide Tipped Blade						
NO	WOOD	COMPOSI	ITES	ALUMINI (Including Alum.			HARDENED MATE ling IHCP Cylinder S			DTHER ites, Tires, etc.)		
CATI	EASY 🗲 🗕				—— MACHIN	IABILITY —				> DIFFICULT		
PPLI	CAST MAS	STER™ Super	ior Performance	e When Saw	ing Castings							
ECIAL AF												
SPE(MASTE GRIT				Carbide (Grit Edge Blade	MASTER - for Cutting A		lardened Materials		

BI-METAL PRODUCT SELECTION

	ALUMINUM/ Non-Ferrous	CARBON STEELS	STRUCTURAL STEELS	ALLOY STEELS	BEARING STEELS	MOLD STEELS	STAINLESS STEELS	TOOL STEELS	TITANIUM Alloys	NICKEL-BASED ALLOYS (INCONEL®)
	EASY 🗲 🗕				— MACHIN	ABILITY —				> DIFFICULT
ANCE	Q xI	p TM			Q xp [™] Lo	ong Life. Fast	t Cutting			
ERFORMANCE							CONTEST	OR GT ® Long	g Life. Straight	: Cuts
Δ.		ARMOR® RA Structura	K®⁺ Long Life. Is/Bundles							
HIGH		LENOX® RX Structura	∕® [≁] Long Life. Is/Bundles							
	CLASSIC	" PRO ™ Long L	ife. Extremely Ve	ersatile			CLASSI	C PRO™		
PURPOSE	LENOX	CLASSIC® 3,	/4" and Wider B	lades			LENOX C	LASSIC®		
GEN. PL		STER 2 ® 1/2"	and Narrower E	lades			DIEMAS	STER 2®		

TRI-TECH CT™

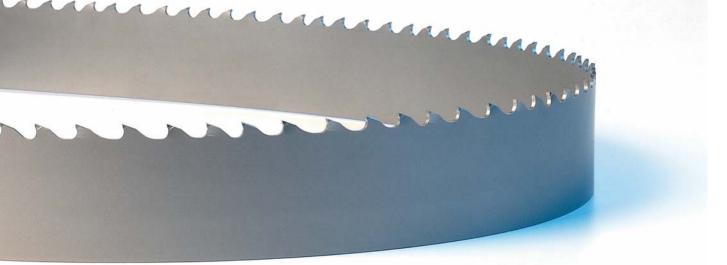
SET STYLE CARBIDE For Difficult-to-Cut Metals

STRAIGHT CUTS. NO PINCHING.

Set style tooth pattern eliminates pinching in high stress metals. Wide kerf clearance enables plunge cutting.

PROLONGED BLADE LIFE

High grade carbide tips are precision ground for efficient cutting.


High performance backing steel minimizes body breakage. Optimized chip formation keeps the blade moving through the work.

EXTREME VERSATILITY

Cuts a range of materials from high strength steels to Nickel-based alloys.

Positive rake angle provides strength and durability at the cutting edge.

WIDTH x T	HICKNESS			TPI				
IN	ММ	0.6/0.8	0.9/1.1	1.4/1.8	1.8/2.0	2.5/3.4	S	
1-1/4 x .042	34 x 1.07				•	•	SNOI	Nickel-based Alloy (Inconel®), Iron Based Super
1-1/2 x .050	41 x 1.27			•	•	•	ICAT	Alloys, Titanium Alloys, High Chrome Alloys, Stainless Steel, Mold and Tool Steels, Aluminum/
2 x .063	54 x 1.60		•	•	•	•	PPLIC/	non-Ferrous
2-5/8 x .063	67 x 1.60	•	•	•			A	
3 x .063	80 x 1.60	٠	•					

ARMOR™ CT BLACK

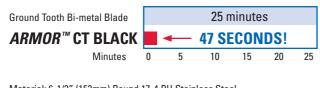
For Extreme Cutting Rates

ALTIN ARMOR FOR SPEED AND PRODUCTIVITY

Aluminium, Titanium and Nitrogen combine to form a coating that is hard and tough, protecting each tooth from heat and wear with an armor-like barrier

ARMOR ALLOWS FOR LOW THERMAL CONDUCTIVITY Forces heat into the chips rather than the blade or workpiece

HIGH QUALITY, MICRO-GRAINED CARBIDE Tailored to cut a wide range of materials


HIGH PERFORMANCE BACKING STEEL Excellent fatigue life

WIDTH x T	HICKNESS		т	PI			
IN	ММ	0.9/1.1	1.4/1.6	1.8/2.0	2.5/3.4	\$	
1-1/4 x .042	34 x 1.07			٠	•	IONS	Carbon steels, Alloy stee
1-1/2 x .050	41 x 1.27		•	•	•	LICAT	ing steels, Stainless stee steels, Titanium alloys, B
2 x .063	54 x 1.60	•	•	•	•	PPL	tubing
2-5/8 x .063	67 x 1.60	•	•	•		<	
3 x .063	80 x 1.60	•					

eels, Aluminum, Beareels, Mold steels, Tool Bundled, mild steel

EXTREME CUTTING RATES!

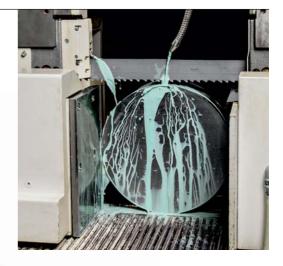
Material: 6-1/2" (152mm) Round 17-4 PH Stainless Steel Based on internal test results.

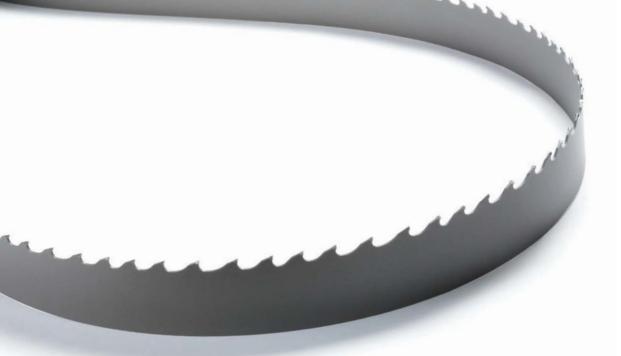
(see page 8 for details)

MAX CT[™]

Maxiumum Cutting Performance on Aerospace Alloys

EXCEPTIONAL BLADE LIFE


Multi-chip tooth pattern balances the chip load and reduces cutting forces. Next generation welding technology prevents premature tooth loss.


FASTER, STRAIGHTER CUTS

Aggressive rake angles aid in tooth penetration in difficult to cut metals. Optimized gullet geometry increases beam strength for straighter cuts.

SUPERIOR PART FINISH

Precision ground carbides create razor sharp teeth for a mirror-like finish on cut parts.

WIDTH x 1	HICKNESS		Т	PI			
IN	MM	0.9/1.1	1.0/1.4	1.4/2.0	2/3		
1-1/4 x .042	34 x 1.07				•	ONS	Nickel-Based Alloys (Inconel®)
1-1/2 x .050	41 x 1.27			•	•		Stainless steels
2 x .050	54 x 1.27			•	•	2	Tool steels
2 x .063	54 x 1.60	•	•	•	•	APP	Titanium Alloys
2-5/8 x .063	67 x 1.60	•	•	•			
3 x .063	80 x 1.60	•					

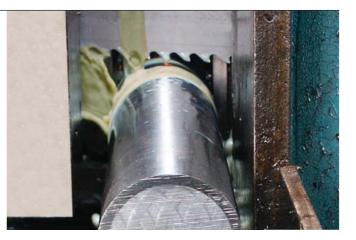
TRI-MASTER™

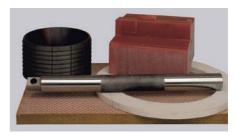
Versatile Carbide Tipped Blade

PRECISION TRIPLE CHIP GRIND Smooth cuts, excellent finish. **NEW HIGH PERFORMANCE BACKING STEEL** Excellent fatigue life.

	FORM HICKNESS			<i>tooth®</i> Pi		STANDARD POSITIVE TPI		
IN	MM	1.2/1.8	1.5/2.3	2/3	3/4	3		
3/8 x .032	9.5 x 0.80				•	•		
1/2 x .025	12.7 x 0.64					•	SNO	
1 x .035	27 x 0.90			•	•		ATI	Abra
1-1/4 x .042	34 x 1.07		•	•	•	•	APPLICATIONS	stee
1-1/2 x .050	41 x 1.27	•		•	•	•	AP	
2 x .063	54 x 1.60	•		•				
2-5/8 x .063	67 x 1.60	•						
3 x .063	80 x 1.60	•						

Abrasive non-ferrous materials, Wood cutting, Alloy steels, Tool steels, Bearing steels, Carbon steels, Stainless steels, Mold steels


(see page 8 for details)


HRc™

Carbide Tipped Blade for Case Hardened Materials

HIGH QUALITY, MICRO-GRAINED CARBIDE Outstanding durability. STRONG TOOTH DESIGN 0° rake angle, superior strip resistance. NEW HIGH PERFORMANCE BACKING STEEL Excellent fatigue life. REPLACES ABRASIVE CUT-OFF OPERATIONS

TOOTH WIDTH x T	I FORM HICKNESS		<i>TOOTH®</i> 'PI	STANDARD POSITIVE TPI		
IN	ММ	2/3	3/4	3	ONS	
1 x .035	27 x 0.90			•		IHCP cylinder shafting, Ampco bronze
1-1/4 x .042	34 x 1.07		•	•	PLIC	hardened materials, Tyre cutting, Rail
1-1/2 x .050	41 x 1.27		•		APPI	
2 x .063	54 x 1.60	•				

MASTER-GRIT[™]

Carbide Grit Edge Blade for Cutting Abrasive and Hardened Materials

TUNGSTEN CARBIDE PARTICLE GRIT

Metallurgically bonded edge.

GULLETED

For applications greater than 1/4"(6.4mm) in cross-section. **CONTINUOUS**

For applications less than 1/4"(6.4mm) in cross-section.

DGE PREPA WIDTH x T	RATION GRIT HICKNESS		GULLETED		CONTINUOS		
IN	мм	MEDIUM	MED-COARSE	COARSE	MEDIUM		
1/4 x .020	6.4 x 0.50				•	SNOL	
3/8 x .025	9.5 x 0.64	•	•			ATIC	Fiberglass, Reinforced plastics, Graphite, Ste
1/2 x .025	12.7 x 0.64	•	•		•	APPLICAT	belted tires
3/4 x .032	19 x 0.80		•	•		AP	
1 x .035	27 x 0.90		•	•	•		
1-1/4 x .042	34 x 1.07			•			

CAST MASTER™

Superior Performance When Sawing Castings

EXCEPTIONAL BLADE LIFE IN HAND FED FOUNDRY APPLICATIONS

Sub-micron grade carbide teeth designed for cutting aluminum and non-ferrous parts.

Precision grind on the rake face prevents material build up on tooth edge

CUTS PARTS FREELY WITH LIMITED FEED PRESSURE

Optimised rake angle and narrow kerf enable high speed cutting without pulling the part.

Multi-chip tooth design reduces cutting forces and limits vibration

HIGH ALLOY BACKING STEEL INCREASES FATIGUE LIFE

Advanced backing steel preparation minimizes band breaks

WIDTH x T	HICKNESS		TPI			s	
IN	ММ	2	2/3	3	3/4	SNOI.	
3/4 x .035	19 x 0.90			•*	•	-ICAT	Aluminium / Non-ferrous, Wood, Castings, Composites, Gates and Risers
1 x .035	27 x 0.90		•	•*	•	APPL	
1-1/4 x .042	34 x 1.07	•	•	•	•	•	

• = Multi-chip design

* = Set Style

CARBIDE PRODUCT SELECTION CHART

ц	ALUMINUM/ NON-FERROUS	CARBON STEELS	STRUCTURAL STEELS	ALLOY STEELS	BEARING STEELS	MOLD STEELS	STAINLESS STEELS	TOOL STEELS	TITANIUM Alloys	NICKEL-BASED ALLOYS (INCONEL®)
ANC	EASY ←				—— МАСНІМ	IABILITY —				> DIFFICULT
RFURMAN			ARMOR	® CT BLACK	K Extreme Cuttin	g Rates				
2						LENOX® M	I AX CT ® Extre	eme Performan	ce on Super Alloys	
ב ב	TRI TEC	H CT™	for Difficult to	Cut Metals						
	TRI-MA	STER®				TRI-MAST	ER Versatile Ca	rbide Tipped E	Blade	
N	WOOD	COMI	POSITES		MINUM Alum. Castings)		E HARDENED MAT Iuding IHCP Cylinder			OTHER ITES, TIRES, ETC.)
PLICATION	EASY 🗲				—— МАСНІМ	IABILITY —				> DIFFICULT
	CAST M	ASTER™ Sup	erior Performan	ce When Sav	ving Castings					
EUIAL AP			LENOX® de for Case an		dened Materials					
SPEC		MAST	ER-GRIT®			Carbide	e Grit Edge Blad	MASTER e for Cutting		Hardened Materials

For Technical Assistance see us on the web at www.lenox.eu or contact your LENOX® Technical Representative.

CARBIDE TOOTH SELECTION

ARMOR® CT BLACK

							DIAMETE	B OF CUIT						
INCHES	1	2.5	3	4	5	6	7	8	10	12	13	15	17	20+
MM	25	60	70	100	120	150	170	200	250	300	330	380	430	500-
	25	00	70	100	120	150	170	200	230	500	550	300		.8TPI
												0.9/1.1 TP		.0171
											1.4/1.6 TPI	0.9/1.11F		
							1.8/2.0TPI				1.4/1.0171			
			2.5/3.				1.0/2.0171							
		0	2.0/3.	4171										
ENOX®	MAX	СТ⊮												
					١	WIDTH OR	DIAMETE	R OF CUT						
NCHES	1	2	3	4	5	6	7	8	10	11	14	16	18	20
MM	25	50	75	100	125	150	175	200	250	275	350	400	450	500+
										0.9/1.1 TPI				
							1.0/1	4TPI						
						1.4/2.0TPI								
		2/3	TPI											
RI-TEC	н ст®													
					1	WIDTH OR	DIAMETE	R OF CUT						
INCHES	1	2.5	3	4	5	6	7	8	10	12	13	15	17	20+
MM	25	60	70	100	120	150	170	200	250	300	330	380	430	500-
													0.6/0	.8TPI
													0.9/1.1 TPI	
										1.4/1	.8TPI			
							1.8/2.0 TPI							
			2.5/3.	4TPI										
RI-MA	STER®	• LENO	X® HRc	• CAS	T MAS	TER™								
								R OF CUT						
NCHES	1	2.5	3	4	5	6	7	8	10	12	13	15	17	20
MM	25	60	70	100	120	150	170	200	250	300	330	380	430	500
												.8TPI		1
									1.5/	2.3TPI				
					2/3	TPI								
				31										
			3/4 TPI											
			0/4111											

CARBIDE SPEED CHART

Mate	erial	ARMOR	° CT BLACK	LENOX	™ MAX CT®	TRI	-TECH [™]	TRI-I	MASTER®	CAST	MASTER™	LENO	X® HRc®
ТҮРЕ	GRADE	FPM	MPM	FPM	MPM	FPM	МРМ	FPM	MPM	FPM	MPM	FPM	MPM
Aluminum Alloys	2024, 5052, 6061, 7075					3,500 -	1,000 -	3,500-	1000-	3,500-	1000-		
Aluminum Alloys						8,500	2,600	8,500*	2600	8,500*	2600		
	CDA 220 CDA 360					240 300	73 91	210 295	65 90	210 295	65 90		
Copper Alloys	Cu Ni (30%)					220	67	200	60	200	60	280	85
	Be Cu					180	55	160	50	160	50		
	AMPCO 18 AMPCO 21					205 180	62 55	180 160	55 50	180 160	55 50		
	AMPCO 25					115	35	110	35	110	35		
Bronze Alloys	Leaded Tin Bronze					300	91	290	90	290	90		
	Al Bronze 865					180	55	150	45	150	45		
	Mn Bronze 932					220 300	67 91	215 280	65 85	215 280	65 85		
	937					300	91	250	75	250	75		
	Cartridge Brass			260	80	240	73	220	65			220	65
Brass Alloys	Red Brass (85%) Naval Brass			230	70	230	70	200	60			200	60
	1145	370	115	200	70	290	88	290	90			200	00
.eaded, Free Machining .ow Carbon Steels	1215	425	130			325	99	325	100				
	12L14	450	135			350	107	350	105				
Structural Steel	A36 1008, 1018	350 310	105 95			250	76	250	75			270**	80
ow Carbon Steels	1030	290	90			240	73	240	75			250**	75
Aedium Carbon Steels	1035	285	85			230	70	230	70			240**	75
	1045	275	85			220	67	220	65			230**	70
ligh Carbon Steels	1060 1080	260 250	80 75									200** 195**	60 60
	1095	240	75									185**	55
Vn Steels	1541	260	80										
	1524	240	75			220	07						
Cr-Mo Steels	4140 41L50	300 310	90 95			220 250	67 76						
	4150H	290	90			200	/ .						
	6150	315	95			190	58						
Cr Alloy Steels	52100	300	90			190	58						
	5160 4340	315 300	95 90			190	58						
Ni-Cr-Mo Steels	8620	310	95			190	58						
VI-GI-INIO SLEEIS	8640	305	95										
ow Allow Tool Stool	E9310 L-6	315 300	95 90	240	75	240	73	190	60				
Low Alloy Tool Steel Nater-Hardening													
Fool Steel	W-1	300	90	240	65	220	67	175	55				
Cold-Work Tool Steel	D-2	240	75	210	65	210	64	170	50				
Air-Hardening Tool Steels	A-2 A-6	270 240	80 75	230 220	70 65	230 220	70 67	185 175	55 55				
an-maraening roor steers	A-10	190	60	160	50	160	49	130	40				
Hot Work Tool Steels	H-13	240	75	220	55	220	67	175	55				
	H-25	180	55	150	45 75	150	46	120	35				
Dil-Hardening Tool Steels	0-1 0-2	260 240	80 75	240 220	65	240 220	73 67	190 175	60 55				
	M-2, M-10	140	45	110	35	110	34	90	25				
ligh Speed Tool Steels	M-4, M-42	130	40	105	30	105	32	85	25				
ingil opoola roor otoolo	T-1	120	35 30	100 80	30 25	100 80	30 24	80 65	25 20				
	T-15 P-3	100 300	90	200	60	200	61	160	50				
Aold Steels	P-20	280	85	160	50	160	49	130	40				
Shock Resistant	S-1	220	65										
fool Steels	S-5, S-7 304	200 260	60 80	220	65	190	58	155	45			220	65
	316	240	75	180	55	180	55	125	45			180	55
Stainless Steels	410,420	290	90	250	75	250	76	175	55			250	75
	440A	250	75	200	60	200	61	140	45			200	60
Precipitation Hardening	440C 17-4 PH	240 300	75 90	200	60 50	200	61 49	140	45 35			200	60 50
stainless Steels	15-5 PH	300	90	140	45	160	49	100	30			140	45
ree Machining	420F	340	105	270	80	270	82	190	60			270	80
Stainless Steels	301 Manal® K 500	320	100	230	70	230	70	160	50		_	230	70
Nickel Alloys	Monel [®] K-500 Duranickel [®] 301			90 80	25 25	90 80	27 24	90 80	25 25				
	A286, Incoloy® 825			80	25	105	32	80	25				
ron-Based Super Alloys	Incoloy 600			75	25	85	26	75	25				
	Pyromet® X-15 Inconel® 600, Inconel 718			90 85	25 25	90 105	27 32	90 85	25 25			-	-
	Nimonic [®] 90			00	20	105	32 30	00	20				
lickal Racad Allows	NI-SPAN-C [®] 902, RENE [®] 41			85	25	105	32	85	25				
Nickel-Based Alloys	Inconel®625			115	35	105	32	115	35				
	Hastalloy B, Waspalloy			75	25	100	30	75	25				
	Nimonic [®] 75, RENE [®] 88 CP Titanium	230	70	75 180	25 55	105	32 55	75 150	25 45		-		
itanium Alloys	Ti-6A1-4V	230	70	180	55	180	55	150	45				
	A536 (60-40-18)	360	110										
	A536 (120-90-02)	175	55										
Cast Irons	A48 (Class 20) A48 (Class 40)	250 160	75 50										
	A48 (Class 40) A48 (Class 60)	115	35										

Охр™

Long Blade Life At High Cutting Rates

LONG LIFE. FAST CUTTING Solids of mild to moderate machinability. Proprietary backing steel preparation provides increased fatigue life. PENETRATES WITH LESS FEED FORCE

Extreme positive rake tooth form **INCREASED CUTTING RATES** Deep gullet design

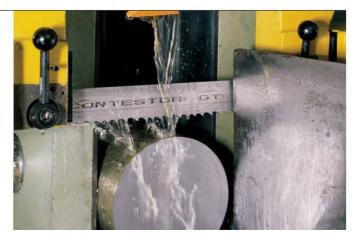
WIDTH x T	HICKNESS			т	PI				
IN	ММ	1.0/1.3	1.5/2.0	2/3	3/4	4/6	5/8		
3/4 x .035	19 x 0.90					*●		6	
1 x .035	27 x 0.90			•	•	•	•	SNOL	Alu
1-1/4 x .042	34 x 1.07		•	•	•	•	•	ICATI	Ste
1-1/2 x .050	41 x 1.27		•	•	•	•		APPL	Ste
2 x .063	54 x 1.60	•	•	•	•	•		A	
2-5/8 x .063	67 x 1.60	•	•	•	•				
3 x .063	80 x 1.60	•							

MERCURIZE

uminum/Non-Ferrous, Carbon Steels, Alloy eels, Bearing Steels, Mold Steels, Stainless eels, Tool Steels, Heavy walled tubing

* = LXP

(see page 8 for details)



BI-METAL BANDSAW BLADES

CONTESTOR GT™

High Performance Bi-metal Blade

GT: GROUND TOOTH Cuts with less feed pressure. HIGH SPEED, STEEL EDGE MATERIAL M-42 standard; M-51 available as listed below. UNIQUE GULLET DESIGN Increased beam strength. USE WHEN TOOL LIFE AND CUTTING ACCURACY ARE MOST IMPORTANT

WIDTH x T	HICKNESS			Т	PI				
IN	ММ	0.7/1.0	1.0/1.3	1.4/2.0	2/3	3/4	4/6		
1 x .035	27 x 0.90				•	•	•	s	
1-1/4 x .042	34 x 1.07			•	•	•	•	TIONS	Aluminum/ľ
1-1/2 x .050	41 x 1.27			•	◆■		•	ICA	Steels, Bea
2 x .050	54 x 1.27		•	•	•			APPL	Steels, Tool
2 x .063	54 x 1.60	•	•	•	◆■	•		A	
2-5/8 x .063	67 x 1.60	•	◆■	◆■	•				
3 x .063	80 x 1.60	•	•	•					

Aluminum/Non-Ferrous, Carbon Steels, Alloy Steels, Bearing Steels, Mold Steels, Stainless Steels, Tool Steels, Heavy walled tubing

- = Milled Tooth
- = M-51 Edge

(see page 8 for details)

RX®+

Engineered to Cut Structurals, Tubing and Bundles

REINFORCED TOOTH DESIGN

For long life and extreme durability. **UNIQUE, PATENTED TOOTH PROFILE**

Powers through interrupted cuts. Eliminates tooth strippage.

UNIQUE, PATENTED TOOTH PITCH/SET SEQUENCE Minimizes vibration and equalizes tooth loading. This eliminates harmonics and significantly reduces noise levels.

M-42 HIGH SPEED STEEL TOOTH EDGE For durability.

WIDTH x T	HICKNESS			TPI				
IN	ММ	2/3	3/4	4/6	5/8	10/14		
5/8 x .032	16 x 0.80					*		
3/4 x .035	19 x 0.90			•	•		NS	
1 x .035	27 x 0.90	•	•	•	•		APPLICATIONS	Large cross-section profiles, Bundled structural
1-1/4 x .042	34 x 1.07	•†	•†	•†	•		SLIC,	steel and tubing
1-1/2 x .050	41 x 1.27	•†	•†	•†	•		APF	
2 x .050	54 x 1.27	•	•†	•	•			
2 x .063	54 x 1.60	•†	•†	•				
2-5/8 x .063	67 x 1.60	•†	•†	•				

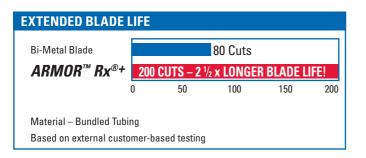
† = Extra heavy set available to prevent blade pinching

★ = Matrix Edge

ARMOR™ RX®+

For Extended Blade Life and Increased Productivity

ALL THE ADVANTAGES OF RX®+, PLUS: ALTIN ARMOR FOR PRODUCTIVITY & BLADE LIFE


Aluminium, Titanium and Nitrogen combine to form a coating that is hard and tough, protecting each tooth from heat and wear with an armor-like barrier. ARMOR allows for low thermal conductivity that forces heat into the chips rather than the blade or work piece.

WIDTH x T	HICKNESS		TPI		N S	
IN	ММ	2/3	3/4	4/6	NOI	
1-1/4 x .042	34 x 1.07		•		ICAT	Large cross-section profiles, Bundled structural steel and tubing
1-1/2 x .050	41 x 1.27	•	•†	•†	PPL	
2 x .063	54 x 1.60	•	•†		A	

+ = Also available as Extra Heavy Set

CLASSIC[™]

The Ultimate Multi-Purpose Blade

SHALLOW GULLETS
For increased beam strength.
PATENTED TUFF TOOTH™ DESIGN
For strip resistance.
M-42 HIGH SPEED STEEL EDGE
For durability.

	I FORM HICKNESS		<i>tooth</i> ® Pi			<i>tooth</i> ® Pi		WA T	VY Pi	HOOK TPI	IS	
IN	ММ	4/6	6/8	5/8	6/10	8/12	10/14	14	18	3	TIO V	Carbon steels, Light alloy
3/4 x .035	19 x 0.90	•	٠	•	•	•	•	٠	٠	•	ICA	steels, Mold steels, Tool
1 x .035	27 x 0.90	•	•	•	•	•	•		•	•	APPI	steels, Stainless steels
1-1/4 x .042	34 x 1.07		•	•	•	•						

† = Extra heavy set available to prevent blade pinching

CLASSIC PRO[™]

The Ultimate Multi-Purpose Blade for Production Cutting

EXCEPTIONAL BLADE LIFE

Proprietary backing steel preparation increases fatigue life. Robust M42 high speed steel edge provides superior heat and wear resistance

EXTREMELY VERSATILE

Cuts a wide range of metals from low carbon steels to higher strength alloys

Advanced design enables production cutting of solids and structurals

Positive rake angle improves tooth penetration on saws with limited feed force

CONSISTENT PERFORMANCE CUT AFTER CUT

Unique tooth geometry and set minimizes noise and vibration from the first cut

TOOTH WIDTH x T				ТРІ				
IN	MM	1.4/2.0	2/3	3/4	4/6	5/8		
1 x .035	27 x 0.90		•	•	•	•	SNO	
1-1/4 x .042	34 x 1.07	•	•	•	•	•	CATIO	Carbon steels, Light alloy steels, Mold steels, Tool
1-1/2 x .050	41 x 1.27	•	•	•†	•	•	E	steels, Stainless steels
2 x .050	54 x 1.27		•	•	•		AP	
2 x .063	54 x 1.60	•	• †	•†	•			
2-5/8 x .063	67 x 1.60	•	•†	•†				

+ = Extra heavy set available to prevent blade pinching

BI-METAL BANDSAW BLADES

DIEMASTER 2®


Engineered for Contour Cutting

M-42 HIGH SPEED STEEL TOOTH EDGE For durability.
DESIGNED TO RUN AT HIGH SPEED Runs at twice the speed of carbon.
INCREASED BLADE LIFE Lasts 10 times longer than carbon blades.
GENERAL PURPOSE HAND-FED APPLICATIONS Tool and die shops, machine shops, maintenance facilities.

	I FORM HICKNESS			<i>footh®</i> Pi				DARD Pi			HOOK TPI			
IN	ММ	6/10	8/12	10/14	14/18	10	14	18	24	3	4	6		
1/4 x .025	6.4 x 0.64			•	•							•	~	
1/4 x .035	6.4 x 0.90			•								•	ATIONS	Carbon steels, Light allo steels, Mold steels, Tool
3/8 x .025	9.5 x 0.64			•	•								ICA.	steels, Stainless steels,
3/8 x .035	9.5 x 0.90					•					•	•	APPLIC	Sheet metal
1/2 x .020	12.7 x 0.50			*			*	*	*					
1/2 x .025	12.7 x 0.64	•	•	•	•		•	•			•	•		
1/2 x .035	12.7 x 0.90					٠	٠			•	•	٠		

★ = Matrix Edge

BI-METAL PRODUCT SELECTION

	ALUMINUM/ Non-Ferrous	CARBON STEELS	STRUCTURAL STEELS	ALLOY STEELS	BEARING STEELS	MOLD STEELS	STAINLESS STEELS	TOOL STEELS	TITANIUM ALLOYS	NICKEL-BASED ALLOYS (INCONEL®)
	EASY 🗲				—— МАСНІ	NABILITY –				> DIFFICULT
ANCI	Q xI	o ^{7M}			@xp™ Lo	ong Life. Fas [.]	t Cutting			
RFORMANCE							CONTES	TOR GT® Lo	ong Life. Straigh	t Cuts
Ы		ARMOR® R Structura	X®[≁] Long Life. als/Bundles							
HIGH		LENOX® R. Structura	X®⁺ Long Life. als/Bundles							
	CLASSIC	PRO ™ Long l	∟ife. Extremely Ve	ersatile			CLASSI	C PRO™		
PURPOSE	LENOX	CLASSIC® 3	/4" and Wider Bl	ades			LENOX C	LASSIC®		
GEN. PL	DIEMAS	S TER 2 ® 1/2″	and Narrower B	lades			DIEMAS	STER 2®		

For Technical Assistance see us on the web at www.lenox.eu or contact your LENOX® Technical Representative.

BI-METAL PRODUCT SELECTION CHART

These figures are a guide to cutting 4" (100mm) material with a bi-metal blade and flood sawing fluid:

Adjust Band Speed for D	ifferent Sized Materials
Material:	Band Speed:
1/4" (6mm)	Chart Speed + 15%
3/4" (19mm)	Chart Speed + 12%
1-1/4" (32mm)	Chart Speed + 10%
2-1/2" (64mm)	Chart Speed + 5%
4" (100mm)	Chart Speed =
8" (203mm)	Chart Speed - 12%

• Reduce band speed 15% when using *MICRONIZER®* lubricants.

• Reduce band speed 30%–50% when sawing without fluid.

• Reduce band speed 50% when sawing with carbon blades.

For Heat Treated Materials								
DECREASE Band Speed:	WHEN CUTTING H Rockwell	ARDER MATERIAL: Brinell						
0%	Up to 20	226						
5%	22	237						
10%	24	247						
15%	26	258						
20%	28	271						
25%	30	286						
30%	32	301						
35%	36	336						
40%	38	353						
45%	40	371						

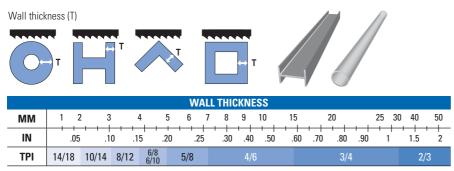
BI-METAL SPEED CHART

Material	Band Speed (feet/min)	Band Speed (metres/min)	U.S Designation	EN	BS970	DIN	Stoff.(Germany)	UNI (Italy)	AFNOR (France)
Copper Alloys	210	64	CDA 220			CuZn10	2.0230	P-CuZn10 4899	CuZn10
	295	90	CDA 360			CuZn36Pb3	2.0375		CuZn36Pb3
	200	61	Copper Nickel (30%)			17658 G-CuNi30			
	160	49	Beryllium Copper			CuBe2			
Bronze Alloys	180	55	AMPCO 18						
	160	49	AMPCO 21						
	110	34	AMPC0 25						
	290	88	Leaded Tin Bronze			GB-CuPb10Sn			
	150	46	Alum.Bronze 932			BG- CuAl10Fe			
	215	66	Manganese Bronze 865			GB-CuZn35Al1			
	280	85	937			GB-CuSn7ZnPb	2.1091		CuSn7
	250	76	Cartridge Brass			GB-CuPb10Sn			CuSn7Pb6Zn4
Brass Alloys	220	67	85% - Red Brass						
	220	67	Naval Brass			GB-CuSn5ZnPb			
	200	61	1145						
Leaded, Free Machining	270	82	1215			A40			
Low Carbon Steels	005		40144			0014.00	4.0700		
	325	99	12L14			9SMn36	1.0736		000001
0	350	107	A36 (Shapes)			9SMnPb36	1.0718		S200Pb
Structural Steels/Profiles	295	90	1008	000	0001415	0710	1.0132	2000	
Low Carbon Steels	270	82	1018	320	080M15	ST12	1.031	3CD8	4540000
	270	82	1030	2C	040A22	C16.8	1.0453	0.00	AF42C20
	250	76	1035	5A	080A27	Ck30	1.1178	C 30	XC32
Medium Carbon Steels	240	73	1045	50	080A32	C35	1.0501	C 35	AF55C35
	230	70	1060	8D	080A42	Ck45	1.0503, 1.1191	C45	2C 45, AF65C45
High Carbon Steels	200	61	1080	8C	080A40	Ck60		1.0601	XC60
	195	59	1095			Ck80			
	185	56	1541			Ck101	1.0618	C100	XC100
Mn Steels	200	61	1524			36Mn5 & GS-36Mn5	1.1167		45 M5
	170	52	4140			22Mn6			
Cr-Mo Steels	225	69	41L50	19A	708M40	41CrMo4	1.7225	G 40 CrMo 4	40 CD 4
	235	72	4150H			50CrMoPb4			
	200	61	6150			(GS-)58CrMnMo443			
Cr Alloy Steels	190	58	52100		735A50	(GS)50CrV4	1.8159	50 CrV 4	50 CV 4
	160	49	5160	40B	722M24	100Cr6	1.3505	100 Cr 6	100C6
	195	59	4340	18A	530A30	65MnCr4	1.7176	55 Cr3	55 C 3
Ni-Cr-Mo Steels	195	59	8620		817M40	40NiCrMo6	1.6562	40 NicRmOM 7	
	215	66	8640		805M17	21NiCrMo2	1.6523	20 NiCrMo2	20 NCD 2
	185	56	9310		945M38	40NiCrMo22	1.6546	40NiCrMo2KB	40NCD2TS
	160	49	304, 304H		830M31	14CrMo13-4	1.6657	15 NiCrM0 13	16 NCD 13
Stainless Steels	115	35	316	58E	304S15	X5CrNi18 10	1.4301	X5 CrNi 18 10	Z6 CN 18-09
otumess oteels	90	27	410	58Jor58J	315S16	X5CrNiMo1810	1.4401	X5CrNim017 12	Z6CND17-11
	135	41	420	56A	410S21	X15Cr13	1.4006	X 10Cr 13	Z10 C 13
	135	41	420 440A	1.4021	420S45	X20Cr13	1.4000	X 20 Cr 13	Z20C13
	80	24	4400	1.4021	420343	X 65CrMo14 & X55CrMo14	1.4021	7200113	220013
	70	24	L-6			X110CrMo17	1.4125		Z100 CD 17
Laure Allaur Taral Charal		44	W-1						
Low Alloy Tool Steel	145					(G)56NiCrMoV7	1.2714	0.140 KU	55NCDV7
Water-Hardening Tool Steel	145	44	D-2			C105W2	1.1673	C 140 KU	1200Y(2)140
Cold-Work Tool Steel	90	27	A-2			X155CrVMo121	1.2379	X155CrVMo12	Z160CDV12
Air-Hardening Tool Steels	190	58	A-6			(G)X100CrMoV51	1.2363	X100CrMoV5 1KU	Z100CDV5
	135	41	A-10						
	100	30	H-13						
Hot-Work Tool Steels	140	43	H-11			(G-)X40CrMoV51	1.2344	X40CrMoV1511KU	Z40CDV5
	90	27	0-1			(G-)X38CrMoV51	1.2343	X37CrMoV51KU	Z38CDV5
Oil-Hardening Tool Steels	180	55	0-2			100MnCrW4	1.2510	95MnWCr5KU	
	135	41	M-2			90MnCrV8			
High Speed Tool Steels	105	32	M-42			S6-5-2 & SC6-5-2	1.3343	HS6-5-2	4301 6-5-2
	95	29	T-1			S2-10-1-8	1.3247	HS 2-9-1-8	4475 2-9-1-8
	90	27	T-15			S18-0-1	1.3355	HS18-0-1	4201 18-0-1
	60	18	P-3			S12-1-4-5	1.3202	HS12-1-5-5	4171 12-0-5-5
Mold Steels	180	55	P-20			13NiCr6			
	165	50	S-1			45 CrMoV7 & 35CRMo4	1.2328	35CrMo8KU	35CMD7
Shock Resistant Tool Steels	140	43	S-5			45WCrV7	1.2542	55WCrV8KU	55WC20
	125	38	17-4 PH			70Si7	1.2823	58SiMo8KU	
Precipitation Hardening	70	21	15-5 PH			X5CrNiCuNb174	1.4542		Z6NU17.04
Stainless Steels	70	21	420F			X4CrNiCuNb164	1.4545		
Free Machining	150	46	301			X20Cr13			
Stainless Steels	125	38	MONEL K-500			X12CrNi177			
Nickel Alloys	70	21	Duranickel 301			NiCu 30 Al	2.4375		
	55	17	A286						
Iron Base Super Alloys	80	24	Incoloy 800			X5NiCrTi25-15	1.4980		Z6NCTDV25.15E
	55	17	Incoloy 825			X10NiCrAITi32-20	1.4876		Z8NC32-21
	80	24	Pyromet			NiCr 21 Mo	2.4858		
	70	24	Inconel 600				2.1000		
Nickel Base Alloys	60	18	Inconel 625			NiCr 15 Fe	2.4816		
Monor Bade Anoyo	80	24	Inconel 718			NiCr 22 Mo 9 Nb	2.4831		
	60	18	Hastalloy B			NiCr19NbMo	2.4651		
	55	17	Waspalloy			NiMo 30	2.4000		
	55	17	Nimonic90			NiCr 19 Co 14 Mo 4 Ti	2.4654		
	60	18	Nimonic 75			NiCr 20 Co 18 Ti	0.4054		
	50	15	NI-SPAN			NiCr 20 Ti	2.4951		
	60	18	RENE 41						
	60	18	RENE 88			NiCr19CoMo	2.4973		
	50	15	CP Titanium						
Titanium Alloys	85	26	Ti-6AI-4V						
	65	20	60-40-18				3.7615		
Cast Irons	225	69	120-90-02			1693 GGG40	0.7040	GS 400-12	FSG400-12
	110	34	Class 20			1693 GGG80	0.7080	GS800-2	
	160	49	Class 40			1691 GG10/1691 GG15	0.6010	Ft 10 D	
		35	Class 60			1691 GG25	0.6025	Ft 25 D	
	115	35	L Glass nu					Ft/bD	

BI-METAL TOOTH SELECTION

- 1. Determine size and shape of material to be cut.
- 2. Identify chart to be used (square solids, round solids, or tubing/structurals).
- 3. Read teeth per mm/inch next to material size.

SQUARE/RECTANGLE SOLID Locate width of cut (W)


	WIDTH OF CUT																		
MM	!	5	10	15	20	25	50	75 10	00	200	300	400	500	600	700 8	0 900) 1000	1100	1200
IN	.1 .2	.3	.4	.5 .6	.7 .8	.9 1	2	5		10	1	15	20	25	3	0 3	35 40) 45	50
TPI	14/18	10/14	8/12	6/8 6/10	5/8	3	4/6	3/4	2/3	1.5/2	.0 1.4/2.0		1.	.0/1.3				.7/1.0	

ROUND SOLID Locate diameter of cut (D)

	DIAMETER OF CUT																						
MM	Ι.		5	10		15 20	25	50 7	75 100	150	200	250	300	350	400	500	600	700	800	900 1	000 1	100	1200
IN	.1	.2	.3	.4	.5	.6 .7	8.91		2	5		10		15	20	0	25	30	3	5 4	40	45	50
TPI		14/18		10/14	8/12	6/8 6/10	5/8	4/6	3/4		2/3	1.	5/2.0 1	.4/2.0			1.0	/1.3				7/1.0	

TUBING/PIPE/STRUCTURALS Locate wall thickness (T)

CARBON BANDSAW BLADES

NEO-TYPE®

Hard Back Carbon Steel Blade

HARDENED BACK BLADES GREAT FOR CUTTING MILD STEELS

At slower speeds, due to a blade design that features both hardened teeth and a hardened back.

SET PA	H FORM Attern [Hickness			STAN RAKER TPI	DARD		WAVY TPI	RA	OK Ker Pi		
IN	MM	6	8	10	14	18	24	3	4	s	Company marked a 114114
1/4 x .025	6.4 x 0.64			•	•	•	•			TIONS	Ferrous metals, Utility cutting of mild steels.
3/8 x .025	9.5 x 0.64		•	•	•	•				5	For use on small cut off
1/2 x .025	12.7 x 0.64	•	•	•	•	•	•		•	APPLI	saws & hand-fed applications.
5/8 x .032	16 x 0.80			•	•						applications.
3/4 x .032	19 x 0.80	•	•	•	•	•					
1 x .035	25.4 x 0.90	•	•	•	•			•			

FLEX BACK

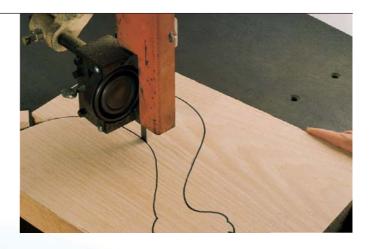
Versatile Carbon Steel Blade

VERSATILE PERFORMANCE

Our hardened tooth tip/flexible back heat treating enables these blades to cut a variety of materials well at fairly high band speeds.

APPLICATIONS

Hand-fed applications on vertical saws, non-ferrous metals, abrasive materials, wood cutting applications.



TOOTH	I FORM			HOOK			SKIP	
	TTERN HICKNESS		RAI T	KER Pl		ALTERNATE TPI	RAKER TPI	
IN	MM	2	3	4	6	2	1	s
1/4 x .025	6.4 x 0.64			٠	•			APPLICATIONS
3/8 x .025	9.5 x 0.64		•	•	•			CAT
1/2 x .025	12.7 x 0.64		•	•	•			PPL
3/4 x .032	19 x 0.80	•	•	•	•			
1 x .035	25.4 x 0.90	•	•					
2 x .035	50.8 x 0.90					•		

#32 WOOD

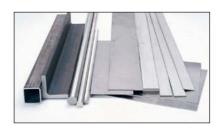
Specialised Wood Applications

#32 WOOD (.032) for contour cutting

TOOTH	I FORM		НООК								
	TTERN HICKNESS		RAKER TPI		ALTERNATE TPI						
IN	ММ	2	3	4	3	4	ATIONS				
1/4 x .032	6.4 x 0.80			•		•	PLIC,				
3/8 x .032	9.5 x 0.80		•	•	•	•	API				
1/2 x .032	12.7 x 0.80	•	•	•	•						

FRICTION BAND

Increased Frictional Heat for Ferrous Metals


INCREASED FRICTIONAL HEAT

Can be operated up to 20,000 feet per minute (6,100 metres per minute). For cutting ferrous metals up to 3/4" (18mm) thick.

	I FORM ITTERN HICKNESS MM	STANDARD RAKER TPI 10	PLICATIONS	Gates & risers, Weldments, Odd shapes, Sheet metal
1 x .035	25.4 x 0.90	•	API	

BAND-ADE®

Semi-Synthetic Sawing Fluid

REDUCES MACHINE WEAR and improves bandsaw blade tool life SURFACES CAN BE WELDED OR PAINTED OVER GENTLE TO OPERATORS' HANDS; does not remove oil from skin DOES NOT CONTAIN chlorine, sulfur, silicone, petroleum oils or sulfonates BIODEGRADABLE

Product Number	Item
68004	1 gallon / 3.8 litre container (packed 4 containers per case). No split cases
68005	2-1/2 gallon / 9.5 litre container (packed 2 containers per case). No split cases
68003	5 gallon / 18.9 litre container
68001	55 gallon / 208.2 litre drum

HMIS/WHMIS HEALTH INDEX – 0 FLAMMABILITY – 0 REACTIVITY – 0

PERSONAL PROTECTION – A

For industrial use only. Not recommended for use as a spray lubricant. Mix this product with water as recommended.

LENOX® MACHINE CLEANER

Prepares your sump for the use of LENOX® Sawing Fluids

HMIS/WHMIS

HEALTH INDEX – 1 FLAMMABILITY – 0 REACTIVITY – 0 PERSONAL PROTECTION – A

For industrial use only. Not recommended for use as a spray Mix this product with water as recommended.

SAW MASTER™

Synthetic Sawing Fluid

LUBRICATES AND COOLS for extended tool life REJECTS MOST TRAMP OILS hydraulic and oils from materials SAFE TO USE; non-irritating to the operator Low- to non-foaming LONGEST SUMP LIFE; excellent anti-microbial package prevents rancidity CAN BE USED IN MOST HARD WATER APPLICATIONS

Product Number	Item
68064	1 gallon / 3.8 litre container
68061	5 gallon / 18.9 litre container
68062	55 gallon / 208.2 litre drum

HMIS/WHMIS	NFPA CODE				
HEALTH INDEX – 1		FIRE			
FLAMMABILITY – 0	HEALTH				
REACTIVITY – 0		REACTIVITY			
PERSONAL PROTECTION – A	SPECIAL HAZARD				

For industrial use only. Not recommended for use as a spray lubricant. Mix this product with water as recommended.

ANTI -SPATTER

Spatter Just Wipes Away!

NON-TOXIC, NON-EXPLOSIVE, NON-COMBUSTIBLE NO SILICONE OR CHLORINE

ADVANCED 14 OUNCE CAN Naturally compressed air (no propellants), easy to hold and use even with gloves. Sprays upside down!

NO WASTED PRODUCT Full use of all 14 ounces.

PROTECTS JIGS AND FIXTURES

Pro	oduct Number	Item
	69040	14 ounce / 397 grams compressed air can (packed 12 cans per case). No split cases
	69041	32 ounce / 906 grams trigger spray bottle (packed 12 bottles per case). No split cases
	69039	1 gallon / 3.8 litre container
	69038	5 gallon / 18.9 litre container
	69037	55 gallon / 208.2 litre drum

HMIS/WHMIS	NFPA CODE				
HEALTH INDEX – 1 FLAMMABILITY – 0	HEALTH	FIRE			
REACTIVITY – 0	SPECIAL	REACTIVITY			
PERSONAL PROTECTION – A	HAZARD				

Material Safety Data Sheets available upon request.

SAWING FLUIDS

LENOX® LUBE®

Synthetic Lubricant for Spray Applications

LENOX® LUBE® IS SPECIALLY FORMULATED FOR USE WITH THE MICRONIZER® OR MICRONIZER®, JR.

A small amount of this clean, synthetic, water based lubricant aids in tooth penetration and reduces frictional heat. The result is longer blade life, while maintaining a clean working environment and reducing coolant disposal costs.

USE WHEN SAWING FERROUS METALS:

Carbon and alloy steels, tool steels, and stainless steels.

COMPATIBLE WITH BAND-ADE® SAWING FLUID

CAN BE WELDED AND PAINTED OVER

Product Number	Item
68014	1 gallon / 3.8 litre containers (packed 4 containers per case). No split cases
68018	5 gallon / 18.9 litre container
68017	55 gallon / 208.2 litre drum

 HMIS/WHMIS
 NFPA CODE

 HEALTH INDEX - 0
 FIRE

 FLAMMABILITY - 0
 HEALTH

 REACTIVITY - 0
 REACTIVITY

 PERSONAL PROTECTION - A
 SPECIAL HAZARD

C/AI LUBE

For Non-Ferrous Spray Applications

C/AL LUBE IS SPECIALLY FORMULATED FOR USE WITH THE MICRONIZER $^{\mbox{\tiny @}}$ or Micronizer $^{\mbox{\tiny @}}$, Jr.

This clean, synthetic oil lubricant, formulated for sawing non-ferrous metals, improves cutting performance and helps to prevent material chips from welding to teeth. The result is improved surface finish and extended saw blade life.

FOR SAWING NON-FERROUS METALS, ESPECIALLY ALUMINIUM AND COPPER ALLOYS

INSOLUBLE IN WATER

Product Number	Item
68024	1 gallon / 3.8 litre containers (packed 4 containers per case). No split cases
68026	5 gallon / 18.9 litre container
68025	55 gallon / 208.2 litre drum

 HMIS/WHMIS
 NFPA CODE

 HEALTH INDEX - 0
 FIRE

 FLAMMABILITY - 1
 HEALTH

 REACTIVITY - 0
 REACTIVITY

 PERSONAL PROTECTION - A
 SPECIAL HAZARD

For industrial use only. Not recommended for use as a spray lubricant. Use this product as it comes from the container - do not mix with water.

SAWING FLUIDS

LUBE TUBE

Manually Applied Lubricant Stick

EXTREME PRESSURE LUBRICANT TO PREVENT THE BUILD-UP OF FRICTIONAL HEAT ON METAL SURFACES

DESIGNED TO BE APPLIED TO BANDSAW BLADES AND OTHER CUTTING TOOLS Improves overall tool life and productivity.

IMPROVES TOOL LIFE

When sawing, drilling, milling, grinding, threading or tapping. CAN BE USED ON FERROUS AND NON-FERROUS METALS, ALUMINUM GATES AND RISERS, PLATES AND EXTRUSIONS BIODEGRADABLE, NON-TOXIC AND NON-STAINING

Product Number	Item
68020LNX	14.5 ounce / 411.1 gram container (packed 12 tubes per case). No split cases

NFPA CODE

FIRE

REACTIVITY

HMIS/WHMISNFIHEALTH INDEX - 0HEALTHFLAMMABILITY - 0HEALTHREACTIVITY - 0SPECIAIPERSONAL PROTECTION - ASPECIAIHAZARDHAZARD

JIECTION – A HAZARD

Material Safety Data Sheets available upon request.

MICRONIZER® AND MICRONIZER®, JR.

Spray Applicators

Precise fluid pump and air pressure controls ensure the correct amount of lubricant is applied to the blade. A variety of nozzles are available. The MICRONIZER® is recommended for production sawing operations and for larger bandsaw machines using 1-1/4" (34mm) and wider blades. The MICRONIZER®, JR. is recommended for 1" (25mm) blades and under, using non-automatic saws, for metalworking applications. For more information, contact your LENOX® Representative.

BLADE TERMINOLOGY

- 1. BLADE BACK The body of the blade not including tooth portion.
- 2. THICKNESS The dimension from side to side on the blade.
- 3. WIDTH The nominal dimension of a saw blade as measured from the tip of the tooth to the back of the band.
- 4. SET The bending of teeth to right or left to allow clearance of the back of the blade through the cut.
 - KERF Amount of material removed by the cut of the blade.
- 5. TOOTH PITCH The distance from the tip of one tooth to the tip of the next tooth.
- 6. TPI The number of teeth per inch as measured from gullet to gullet.
- 7. GULLET The curved area at the base of the tooth. The tooth tip to the bottom of the gullet is the gullet depth.

TOOTH FORMS & TOOTH SET

· General purpose design for wide range of

Multi-tooth sequence depending on tooth

14/18 VARI-TOOTH® has random wavy set

• Three tooth sequence - left, right, straight

VARIABLE

STANDARD

• Deep gullets

applications

VARI-RAKER

Varying set angles

• Uniform set angle

pitch

RAKER

· Evenly spaced teeth

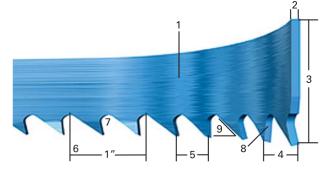
- · Standard tooth forms
- Variable tooth spacing
- Varying gullet depth

VARIABLE POSITIVE

- Smooth cutting
- Reduces noise
- Cuts efficiently
- · Enhances blade life

- Wide gullets
- Evenly spaced teeth
- Positive rake angle
- Good cutting performance on metals which form discontinuous chips (cast iron) and nonmetallic applications (wood, plastic, cork and composition material)

77


WAVY

- Groups of teeth set to each side
- Teeth have varying amounts of sets in a controlled pattern

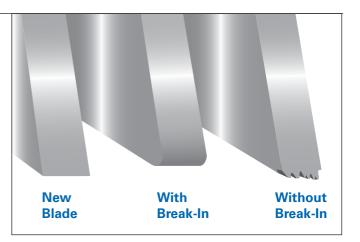
ALTERNATE

- Every tooth set in an alternating sequence
- Wood cutting applications

- 8. TOOTH FACE The surface of the tooth on which the chip is formed.
- 9. TOOTH RAKE ANGLE The angle of the tooth face measured with respect to a line perpendicular to the cutting direction of the saw.

SKIP

- Wide gullets
- Evenly spaced teeth
- · Good cutting performance on non-metallic applications (wood, plastic, cork and composition material)


BLADE BREAK-IN

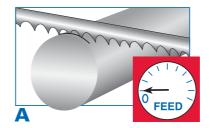
GETTING LONG LIFE FROM A NEW BANDSAW BLADE WHAT IS BLADE BREAK-IN?

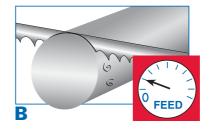
A new bandsaw blade has razor sharp tooth tips as a result of the forming of the teeth. In order to withstand the cutting pressures used in bandsawing, the tooth tip should be honed to form a micro-fine radius. Cutting with high pressure without performing this honing will cause microscopic damage to the tips of the teeth, resulting in loss of blade life.

WHY BREAK-IN A BANDSAW BLADE?

Completing a proper break-in on a new bandsaw blade will dramatically increase its blade life.

HOW TO BREAK IN A BLADE


1. USE THE APPROPRIATE BAND SPEED FOR THE MATERIAL TO BE CUT (SEE BI-METAL BAND SPEED CHART ON PAGES 20 AND 21).


2. Reduce the feed rate/force control on the saw to achieve a cutting rate approximately 20% to 50% of the normal cutting rate. Mild steels require a larger reduction in cutting rate than more difficult to machine materials.

3. Begin the first cut at the reduced rate **(A)**, making sure that the teeth are forming a chip. Once the blade fully enters the workpiece, the feed rate can be slightly increased **(B)**.

4. Make gradual increases in feed rate/force over several cuts until the normal cutting rate is established (cutting a total of 60 to 118 inches² / 150 to 300 cm²) (**C**).

NOTE: During break-in, slight adjustments to band speed may be made in the event of excessive noise or vibration. Once the blade is broken in, the recommended band speed should be used.

POSSIBLE CAUSES OF BLADE FAILURE

Observation	Band Speed	Band Wheels	Break-In Proced.	Chip Brush	Sawing Fluid	Feeding Rate	Side Guides	Backup Guides	Preload Condition	Band Tension	Band Tracking	Tooth Pitch
#1 Heavy even wear on tips and corners of teeth	•		•		•	•						
#2 Wear on both sides of teeth							٠	•				
#3 Wear on one side of teeth		•					•					
#4 Chipped or broken teeth			•			•						•
#5 Discolored tips of teeth due to excessive frictional heat	•				•	•						
#6 Tooth strippage	•		•	٠	•	•						٠
#7 Chips welded to tooth tips	•			•	•	•						
#8 Gullets loading up with material				٠	٠	٠						
#9 Heavy wear on both sides of band					•		•					
#10 Uneven wear or scoring on sides of the band							•					
#11 Body breakage or cracks from gullets							•		•	•		
#12 Body breakage - fracture traveling in angular direction							•		•			
#13 Body breakage or cracks from back edge						•		٠	•	٠	•	
#14 Heavy wear and/or swaging on back edge						•		•	•		•	
#15 Butt weld breakage						•	•	٠	•		•	
#16 Used band is 'long' on the tooth edge		•				٠	٠		٠	٠	•	
#17 Used band is "short" on the tooth edge		•				•	•		•		•	
#18 Band is twisted into figure '8' configuration		•				٠	٠	٠	•	٠	•	
#19 Broken band shows a twist in band length		•				•	•	٠	•	•	•	
#20 Heavy wear in only the smallest gullets	•					•						٠

NEWELL TOOLS NETHERLAND B.V. Grasbeemd 6 5705 DG Helmond

5705 DG Helmond P.O. Box 6084 5700 ET Helmond Netherlands

Tel: +31 (0)492 509 509 Fax: +31 (0)492 509 500 E-Mail: Lenox.Bandsaw@newellco.com

www.lenox.eu

www.lenoxtools.eu